(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) → plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) → plus(plus(y, s(s(z))), plus(x, s(0)))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(minus(x, s(0')), minus(y, s(s(z)))) → plus(minus(y, s(s(z))), minus(x, s(0')))
plus(plus(x, s(0')), plus(y, s(s(z)))) → plus(plus(y, s(s(z))), plus(x, s(0')))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
plus(minus(x, s(0')), minus(y, s(s(z)))) → plus(minus(y, s(s(z))), minus(x, s(0')))
plus(plus(x, s(0')), plus(y, s(s(z)))) → plus(plus(y, s(s(z))), plus(x, s(0')))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
quot,
plusThey will be analysed ascendingly in the following order:
minus < quot
minus < plus
(6) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
minus(
x,
s(
0')),
minus(
y,
s(
s(
z)))) →
plus(
minus(
y,
s(
s(
z))),
minus(
x,
s(
0')))
plus(
plus(
x,
s(
0')),
plus(
y,
s(
s(
z)))) →
plus(
plus(
y,
s(
s(
z))),
plus(
x,
s(
0')))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
minus, quot, plus
They will be analysed ascendingly in the following order:
minus < quot
minus < plus
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s2_0(
n4_0),
gen_0':s2_0(
n4_0)) →
gen_0':s2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
minus(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(0)
Induction Step:
minus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) →IH
gen_0':s2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
minus(
x,
s(
0')),
minus(
y,
s(
s(
z)))) →
plus(
minus(
y,
s(
s(
z))),
minus(
x,
s(
0')))
plus(
plus(
x,
s(
0')),
plus(
y,
s(
s(
z)))) →
plus(
plus(
y,
s(
s(
z))),
plus(
x,
s(
0')))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
quot, plus
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol quot.
(11) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
minus(
x,
s(
0')),
minus(
y,
s(
s(
z)))) →
plus(
minus(
y,
s(
s(
z))),
minus(
x,
s(
0')))
plus(
plus(
x,
s(
0')),
plus(
y,
s(
s(
z)))) →
plus(
plus(
y,
s(
s(
z))),
plus(
x,
s(
0')))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
plus
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s2_0(
n318_0),
gen_0':s2_0(
b)) →
gen_0':s2_0(
+(
n318_0,
b)), rt ∈ Ω(1 + n318
0)
Induction Base:
plus(gen_0':s2_0(0), gen_0':s2_0(b)) →RΩ(1)
gen_0':s2_0(b)
Induction Step:
plus(gen_0':s2_0(+(n318_0, 1)), gen_0':s2_0(b)) →RΩ(1)
s(plus(gen_0':s2_0(n318_0), gen_0':s2_0(b))) →IH
s(gen_0':s2_0(+(b, c319_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
minus(
x,
s(
0')),
minus(
y,
s(
s(
z)))) →
plus(
minus(
y,
s(
s(
z))),
minus(
x,
s(
0')))
plus(
plus(
x,
s(
0')),
plus(
y,
s(
s(
z)))) →
plus(
plus(
y,
s(
s(
z))),
plus(
x,
s(
0')))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n318_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n318_0, b)), rt ∈ Ω(1 + n3180)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)
(17) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
minus(
x,
s(
0')),
minus(
y,
s(
s(
z)))) →
plus(
minus(
y,
s(
s(
z))),
minus(
x,
s(
0')))
plus(
plus(
x,
s(
0')),
plus(
y,
s(
s(
z)))) →
plus(
plus(
y,
s(
s(
z))),
plus(
x,
s(
0')))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n318_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n318_0, b)), rt ∈ Ω(1 + n3180)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
plus(
minus(
x,
s(
0')),
minus(
y,
s(
s(
z)))) →
plus(
minus(
y,
s(
s(
z))),
minus(
x,
s(
0')))
plus(
plus(
x,
s(
0')),
plus(
y,
s(
s(
z)))) →
plus(
plus(
y,
s(
s(
z))),
plus(
x,
s(
0')))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(22) BOUNDS(n^1, INF)